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Abstract
In this paper, a novel analytical approach to heat conduction in a composite slab
subject to periodic temperature changes has been developed. Taking advantage
of the periodic properties of boundary changes, the corresponding analytical
solution is obtained and expressed explicitly. Unlike most of the traditional
methods, it involves no residue evaluation and no iterative computation such as
a numerical search for eigenvalues. The adopted method is simple and elegant.
The physical parameters are clearly shown in the mathematical formula of the
solution. Furthermore, comparison of the method with numerical calculations
demonstrates the applicability and accuracy of the method.

PACS numbers: 02.10.Ud, 02.30.Jr, 05.60.Cd

Notation

f general function
g general function
j general index number
k diffusivity
m inverse Laplace transform of M
M function defined in equation (3.9)
t time
T temperature
x space coordinate
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Greek letters

� matrix determinant defined in equations (3.6) and (3.7)
φ phase
ϕ phase
λ thermal conductivity
� period
ω period

Superscripts

in indoor
out outdoor

1. Introduction

Transient heat conduction through a composite slab is of interest in various engineering
applications. Mathematically it is completely analogous to mass diffusion. In construction
applications, the problem of predicting thermal performances of buildings has attracted
researchers for decades. The problem is complex because envelopes of buildings are often
constructed with multi-layers and the heat equations governing the system have not been
analytically solved. In classical works, analytical solutions are mostly obtained for a single
material layer using finite integral transform [1, 2]. Techniques such as Laplace transform,
Green’s function and orthogonal expansion are also often adopted for obtaining analytical
solutions. It is possible to use similar techniques for a composite slab (e.g. [3]). However, the
associated eigenvalue problem becomes much more complicated [4].

One way to avoid calculating the eigenvalues is to focus on the solutions which only
provide information about conductivity and time lag, i.e. the steady-state rate of the heat
conduction and the time required for the attainment of steady state [5, 6]. With these two
parameters, it is possible to estimate the total amount of heat loss and gain. Such an estimation
is adequate for many practical applications. For heat conduction applications, de Monte [7]
provided a detailed introduction in various solution methods for composite slabs. In mass
diffusion applications, Fredman [4] reviewed various analytical approaches for composite
materials. In addition, Fredman developed a semi-analytical solution for cylindrical geometry
from the local solution on single material layer in combination with a numerical scheme for
material boundary states.

It can be concluded that the analytical solutions of transient conduction on composite
slabs are indeed very complicated, as pointed out by all the researchers cited above. Even
for the simplest case of two-layer slab, solutions are too complicated for practical use [6].
Only recently, Sun et al [8] presented a solution of transient heat conduction on a one-
dimensional three-layer composite slab subject to unchanged temperatures on the boundary.
Their work was mainly based on the method developed recently by de Monte [7, 9] for a two-
layer composite slab. A full series solution was found by employing a ‘natural’ orthogonal
relationship between the eigenfunctions. The eigenvalue problem was solved with a numerical
procedure, i.e. Newton iteration. Numerical and analytical calculations were compared. Sun
et al [8] also conjectured partial solutions for an n-layer composite slab based on their previous
analysis.

The adopted ‘natural’ eigenfunction expansion method in the previous work is
straightforward. However, with more layers in the slab, the numerical work for the eigenvalue
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problem is more tedious and thus practically impossible to solve. Moreover, information
is needed for many transient problems about a composite slab subject to inlet temperature
varying with time periodically. In construction applications for example, average daily,
monthly and yearly temperatures are usually given as input data. Boundary temperatures are
often expressed as a sinusoidal excitation. The temperature variation of a building under such
a boundary condition is important in analysing its thermal behaviour. It is desirable that the
analysis is able to cope with these issues. Motivated by this point, we intend to derive an
analytical solution in this paper for an n-layer composite slab subject to arbitrary periodic
temperature changes.

Compared to the work reviewed above, firstly, the boundary condition is more relaxed
and general. Second, there is no need to numerically search for the eigenvalues and no need to
evaluate the residues. The adopted method is efficient, simple and elegant and the analytical
solution is concise and easy to apply. The physical parameters are clearly shown in the
mathematical formula. To assess the accuracy of the method, further comparison of the results
with numerical calculations is also presented.

2. Mathematical problem

Consider an n-layer composite slab which has constant thermal conductivity, diffusivity and
density for each layer. The thermal conductivity, diffusivity and thickness of each layer are
presented as λj , kj and lj , j = 1, . . . , n. Therefore the layers consist of regions [0, l1], [l1, l2]
and [ln−1, ln]. The boundaries are at x = 0 and x = l1 + · · · + ln. The general heat conduction
in the slab with convective boundary conditions can be described by the following equations
for temperatures Tj (t, x), j = 1, . . . , n:

∂T1(t, x)

∂t
= k1

∂T 2
1 (t, x)

∂x2
, x ∈ [0, l1], (2.1a)

∂Tj (t, x)

∂t
= kj

∂T 2
j (t, x)

∂x2
, x ∈ [l1 + · · · + lj−1, l1 + · · · + lj ], j = 2, . . . , n (2.1b)

and the boundary conditions are

−λ1
∂T1

∂x
(t, 0) = −αout(T1(t, 0) − Tout(t)), (2.2a)

Tj (t, l1 + · · · + lj ) = Tj+1(t, l1 + · · · + lj ), j = 1, . . . , n − 1, (2.2b)

−λj

∂Tj

∂x
(t, l1 + · · · + lj ) = −λj+1

∂Tj+1

∂x
(t, l1 + · · · + lj ), j = 1, . . . , n − 1, (2.2c)

−λn

∂Tn

∂x
(t, l1 + · · · + λn) = −αin(Tin(t) − Tn(t, l1 + · · · + λn)). (2.2d )

The initial temperatures are T1(0, x) = 0, x ∈ [0, l1] and Tj (0, x) = 0, x ∈
[l1 + · · · + lj−1, l1 + · · · + lj ], j = 2, . . . , n. Here the convection heat transfer coefficients for
outdoor and indoor boundaries are denoted as αout and αin. Outdoor and indoor temperatures
are given as Tout(t) and Tin(t). Initially the indoor temperature is assumed to be constant.
Since we are not interested in the initial temperatures of the slab, the initial temperatures do
not need to be specified. We set initial data to zero for the sake of calculational convenience.
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Without loss of generality, boundary temperatures are assumed to be

Tout(t) = a0 +
∞∑

k=1

ak cos(ωkt + ϕk), (2.3)

Tin(t) = 0. (2.4)

Often, the outdoor temperature Tout(t) is written as a simple sinusoidal wave, for example

Tout(t) = 5.6 − 10.7 cos

(
2π

365
(t − 20.0)

)
◦C (2.5)

is a good representation of daily outdoor temperatures in Helsinki area.
Through this paper, if there is no danger of confusion we shall only write the simple forms

of all the notation. For example Tj , Tj (l1 + · · · + ln) instead of Tj (t, x), Tj (t, l1 + · · · + ln) and
Tout instead of Tout(t).

3. Analytical solutions of the equations

3.1. Laplace transformation of the equations

To solve equation (2.1), we perform Laplace transformation. It yields

sT1(s, x) = k1
∂2T1(s, x)

∂x2
, x ∈ [0, l1], (3.1a)

sTj (s, x) = kj

∂2Tj (s, x)

∂x2
, x ∈ [l1 + · · · + lj−1, l1 + · · · + lj ], j = 2, . . . , n,

(3.1b)

where a bar over function f (t) designates its Laplace transformation on t (e.g. [10]):

f̄ (s) = L(f (t)) =
∫ ∞

0
exp(−sτ )f (τ ) dt. (3.2a)

The following property of Laplace transformation is needed later in our calculation:

ḡ(s) = f̄1(s)f̄2(s) gives g(t) =
∫ t

0
f1(τ )f2(t − τ) dτ . (3.2b)

For the boundary conditions, we obtain:

−λ1
∂T1

∂x
(s, 0) = −αout(T1(s, 0) − Tout(s)), (3.3a)

Tj (s, l1 + · · · + lj ) = Tj+1(s, l1 + · · · + lj ), j = 1, . . . , n − 1, (3.3b)

−λj

∂Tj

∂x
(s, l1 + · · · + lj ) = −λj+1

∂Tj+1

∂x
(s, l1 + · · · + lj ), j = 1, . . . , n − 1, (3.3c)

−λn

∂Tn

∂x
(s, l1 + · · · + ln) = −αin(−Tn(s, l1 + · · · + ln)). (3.3d )

Solutions Tj , j = 1, . . . , n of system (3.1) are found to have the forms (e.g. [1])

T1 = A1 sinh(q1x) + B1 cosh(q1x), x ∈ [0, l1], (3.4a)

Tj = Aj sinh(qj (x − l1 − · · · − lj−1)) + Bj cosh(qj (x − l1 − · · · − lj−1)),

x ∈ [l1 + · · · + lj−1, l1 + · · · + lj ], (3.4b)
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where qj = √
s
kj

, j = 1, . . . , n. Coefficients Aj , and Bj , j = 1, . . . , n are determined by
the boundary conditions (3.3). Inserting equation (3.4) into equation (3.3) and rearranging the

resulting equations and setting ξj = qj lj , j = 1, . . . , n and hj = λj+1

λj

√
kj

kj+1
, j = 1, . . . , n − 1

yield the following equations:

λ1q1A1 − αoutB1 = −αoutTout, (3.5a)

Aj sinh ξj + Bj cosh ξj − Bj+1 = 0, j = 1, . . . , n − 1, (3.5b)

Aj cosh ξj + Bj sinh ξj − hjAj+1 = 0, j = 1, . . . , n − 1, (3.5c)

AnhA + BnhB = 0, (3.5d )

where

hA = λnqn cosh ξn + αin sinh ξn, hB = λnqn sinh ξn + αin cosh ξn.

The coefficients Aj and Bj , j = 1, . . . , n can be solved from the linear system (3.5) as follows:

Let �(s)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1q1 −αout 0 0 0 0 ... 0 0 0 0
sinh ξ1 cosh ξ1 0 −1 0 0 ... 0 0 0 0
cosh ξ1 sinh ξ1 −h1 0 0 0 ... 0 0 0 0

0 0 sinh ξ2 cosh ξ2 0 −1 ... 0 0 0 0
0 0 cosh ξ2 sinh ξ2 −h2 0 ... 0 0 0 0
... ... ... ... ... ... ... ... ... ... ...

0 0 0 0 0 0 ... sinh ξn−1 cosh ξn−1 0 −1
0 0 0 0 0 0 ... cosh ξn−1 sinh ξn−1 −hn−1 0
0 0 0 0 0 0 ... 0 0 hA hB

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3.6)

Coefficients Aj and Bj , j = 1, 2, . . . , n are obtained by applying Gramer’s rule which means
that 2j − 1th and 2j th columns of �(s) are replaced by proper columns, i.e.

———————— Column 2j − 1|�

Aj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1q1 −αout 0 −αoutTout 0 0 0 0

sinh ξ1 cosh ξ1 0 0 0 0 0 0

cosh ξ1 sinh ξ1 −h1 0 0 0 0 0

... ... ... ... ... ... ... ...

0 0 0 0 cosh ξn−1 sinh ξn−1 −hn 0

0 0 0 0 0 0 hA hB

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∥∥∥∥∥∥∥∥∥∥∥∥∥∥

λ1q1 −αout 0 ... 0 0 0 0

sinh ξ1 cosh ξ1 0 ... 0 0 0 0
scosh ξ1 sinh ξ1 −h1 ... 0 0 0 0

... ... ... ... ... ... ... ...

0 0 0 ... cosh ξn−1 sinh ξn−1 −hn 0

0 0 0 ... 0 0 hA hB

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= �2j−1(s)Tout, (3.7a)
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———————— Column 2j|�

Bj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1q1 −αout 0 −αoutTout 0 0 0 0

sinh ξ1 cosh ξ1 0 0 0 0 0 0

cosh ξ1 sinh ξ1 −h1 0 0 0 0 0

... ... ... ... ... ... ... ...

0 0 0 0 cosh ξn−1 sinh ξn−1 −hn 0

0 0 0 0 0 0 hA hB

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∥∥∥∥∥∥∥∥∥∥∥∥∥∥

λ1q1 −αout 0 ... 0 0 0 0

sinh ξ1 cosh ξ1 0 ... 0 0 0 0

cosh ξ1 sinh ξ1 −h1 ... 0 0 0 0

... ... ... ... ... ... ... ...

0 0 0 ... cosh ξn−1 sinh ξn−1 −hn 0

0 0 0 ... 0 0 hA hB

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= �2j (s)Tout, (3.7b)

where �2j−1(s) and �2j (s), j = 1, . . . , n are the determinants given above.
Finally, solutions (3.4) can be written as

T1 = A1 sinh(q1x) + B1 cosh(q1x) = M1(s, x)Tout, x ∈ [0, l1] (3.8a)

Tj = Aj sinh(qj (x − l1 − · · · − lj−1)) + Bj cosh(qj (x − l1 − · · · − lj−1)) = Mj(s, x)Tout,

x ∈ [l1 + · · · + lj−1, l1 + · · · + lj ], j = 2, . . . , n, (3.8b)

where

M1(s, x) = �1(s) sinh(q1x) + �2(s) cosh(q1x), (3.9a)

Mj(s, x) = �2j−1(s) sinh(qj (x − l1 − · · · − lj−1)) + �2j (s) cosh(qj (x − l1 − · · · − lj−1)),

j = 2, . . . , n. (3.9b)

The above equations (3.8) and (3.9) and the outdoor temperature Tout allows us to calculate
Tj , j = 1, . . . , n.

3.2. Solutions of the equations

The superposition technique is used to obtain an analytical solution. This requires that the
governing equations be linear. Let us now confine ourselves to T1. For Tj , j = 2, . . . , n,
the same method can be applied. Let us rewrite the outdoor temperature as follows:
Tout(t) = a0 +

∑∞
k=1 ak cos(ωkt + ϕk). This problem of T1 can be split up into two simpler

subproblems such as

(1) outdoor temperature is constant

Tout = a0 (3.10)

(2) outdoor temperature is

Tout =
∞∑

k=1

ak cos(ωkt + ϕk). (3.11a)
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For subproblem (1), since the temperature of the boundary is constant and if we ignore the
transient term which will eventually die away, the temperature distribution is the solution
of the steady-state situation which can be easily obtained from the thermal resistance of the
n layers.

For subproblem (2), we need an auxiliary outdoor temperature defined as the conjugate
form of Tout as T ∗

out:

T ∗
out =

∞∑
k=1

ak sin(ωkt + ϕk). (3.11b)

Let us define

T̂out = Tout + iT ∗
out =

∞∑
k=1

ak exp[i(ωkt + ϕk)]. (3.12)

Let T̂1(t, x) denote the temperature corresponding to outdoor temperature T̂out and using the
linear property of the equations. Clearly

T1(t, x) = Re(T̂1(t, x)), (3.13)

where Re represents the real part of the function.
Now we concentrate on finding the solution for T̂1(t, x). Let m1(t, x) be the inverse

Laplace transformation of M1(s, x), then equation (3.8a) can be rewritten as

T̂1 = M1(s, x)T̂out = m̄1T̂out. (3.14)

Using equation (3.2b), we obtain

T̂1(t, x) =
∫ t

0
m1(τ, x)T̂out(t − τ) dτ

=
∫ ∞

0
m1(τ, x)T̂out(t − τ) dτ −

∫ ∞

t

m1(τ, x)T̂out(t − τ) dτ. (3.15)

As m1 is a bounded function, the second term of equation (3.15) will tend to zero after a long
enough time. Therefore, inserting equation (3.12) into equation (3.15) yields

T̂1(t, x) ≈
∫ ∞

0
m1(τ, x)T̂out(t − τ) dτ =

∫ ∞

0
m1(τ, x)

∞∑
k=1

ak exp[i(ωk(t − τ) + ϕk)] dτ

=
∞∑

k=1

ak exp[i(ωkt + ϕk)]
∫ ∞

0
exp(−iωkτ)m1(τ, x) dτ

————————————�|
Laplace transform of m1 at iωk=M1(iωk,x),see (3.2a)

=
∞∑

k=1

ak exp[i(ωkt + ϕk)]M1(iωk, x)

=
∞∑

k=1

akM1(iωk, x) exp[i(ωkt + ϕk)]. (3.16)

Note that there is a mathematical trick in the above calculation. The inverse Laplace transform
m1(t, x) was acting only as a symbolic function. Taking advantage of the mathematical
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expression of exponential function, m1(t, x) was replaced by its Laplace transformation which
is already available in equation (3.9). This way a complicated residue calculation is avoided.

Combining equations (3.13) and (3.16) gives

T1(t, x) = Re(T̂1(t, x))

=
∞∑

k=1

ak[Re(M1(iωk, x)) cos(ωkt + ϕk) − Im(M1(iωk, x)) sin(ωkt + ϕk))

=
∞∑

k=1

ak|M1(iωk, x)| cos(ωkt + ϕk + dϕ1,k), (3.17a)

where

dϕ1,k = arctan

(
Im(M1(iωk, x))

Re(M1(iωk, x))

)
, k = 1, . . . ,∞. (3.17b)

Similarly,

Tj (t, x) =
∞∑

k=1

ak|Mj(iωk, x)| cos(ωkt + ϕk + dϕj,k) (3.18a)

and

dϕj,k = arctan

(
Im(Mj (iωk, x))

Re(Mj (iωk, x))

)
, k = 1, . . . ,∞, j = 2, . . . , n. (3.18b)

4. Solutions for more general boundary conditions

In this section we list, without showing all the details, the solution in the case of a more general
boundary condition i.e. the case of a periodic indoor temperature change. In this case, the
indoor boundary condition reads

Tin(t) = b0 +
∞∑

k=1

bk cos(�kt + φk). (4.1)

The corresponding equation (3.3d ) becomes

−λn

∂Tn

∂x
(s, l1 + · · · + ln) = −αin(Tin − Tn(s, l1 + · · · + ln)).

Therefore the analytical solutions are determined by the sum of Tout and Tin, which implies
(see equations (3.4), (3.5d ), (3.7) and (3.8)):

T1 = M1(s, x)Tout + N1(s, x)Tin, x ∈ [0, l1], (4.2a)

Tj = Mj(s, x)Tout + Nj(s, x)Tin, x ∈ [l1 + · · · + lj−1, l1 + · · · + lj ], j = 2, . . . , n.

(4.2b)

Omitting the details, the analytical solution reads as

T1(t, x) =
∞∑

k=1

ak|M1(iωk, x)| cos(ωkt + ϕk + dϕ1,k)

+
∞∑

k=1

bk|N1(i�k, x)| cos(�kt + φk + dφ1,k)

+ steady-state distribution (piecewise line for a0 and b0). (4.3)

Temperatures Tj (t, x), j = 1, . . . , n can be obtained similarly.
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By comparing equations (3.17a) and (4.3), we observe that the indoor boundary condition
leads to additional amplitude and phase changes caused by the indoor excitation. This result
is consistent with intuition.

5. Discussion of the solutions

The transient thermal behaviour of an n-layer composite slab is explicitly expressed in
equation (4.3). Now we make some observations.

• It is known that any periodic and piecewise continuous function can be approximated by
its Fourier expansion, i.e. the function can be expressed as an expansion in terms of an
infinite sum of sines and cosines [11]. For example: functions with constant value, square
wave, sawtooth wave and semicircle wave can be approximated in terms of the sum of
sines and cosines. Therefore, the solution obtained in this paper has a much broader
application range than those in the reviewed papers.

• With a periodic excitation of boundary conditions, the temperature variation of any jth
layer material is expressed as periodic excitation with attenuated amplitudes and shifted
phases (or time lags) which are given by functions Mj(s, x) and Nj(s, x) in equation (4.2).
Therefore the functions Mj(s, x) and Nj(s, x), j = 1, . . . , n are actually acting as
‘transfer’ functions from which the attenuated amplitudes and time lags can be obtained
at any layer.

• As a simple example, let outdoor temperature be a simple sinusoidal functions Tout(t) =
5.6 − 10.7 cos

(
2π
365 (t − 20.0)

) ◦C and indoor temperature be 0 ◦C. Then the transient
temperature distribution of the jth layer material for an n-layer composite slab will be

Tj (t, x) = steady-state distribution (determined by the n-layer slab’s thermal resistance)

− 10.7

∣∣∣∣Mj

(
i

2π

365
, x

)∣∣∣∣ cos

(
2π

365
(t − 20.0) + dϕj

)
, j = 1, . . . , n.

(5.1)

It is easily seen that

amplitude = 10.7

∣∣∣∣Mj

(
i

2π

365
, x

)∣∣∣∣ , j = 1, . . . , n.

time lag = dϕj , j = 1, . . . , n.

Time-dependent heat flux can also be explicitly expressed by using equation (5.1).
• Observing the technique we have used in obtaining the analytical solution, it is required

that t is large enough to guarantee the second term in equation (3.15) tends to zero. This
means that the solution is valid a long time after the beginning. However, an assessment of
the comparison for analytical and numerical calculations shows that, amazingly enough,
the analytical solution agrees with the numerical almost from the beginning.

• From a practical computational point of view, it is easily seen that the developed method is
a very useful method. The calculation involves only computations of determinants which
can be easily accomplished by commercial software packages, such as Maple, Matlab,
Mathematica and even with just a pencil and paper. Moreover, for any jth layer material,
only three matrices are involved. Therefore, the developed method is very suitable for
engineering designers for evaluating thermal performances of composite materials using
perhaps calculators only.
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Figure 1. Schematic diagram of the three-layer composite slab studied in example 1.

Table 1. Material properties of the composite slab (see figure 1).

Thermal conductivity Thermal diffusivity Thickness
Material (W m−1 K−1) (m2 s−1) (mm)

1. Wall paper 0.12 1.5 × 10−7 25
2. Mineral wool 0.0337 1.47 × 10−6 200
3. Gypsum board 0.23 4.11 × 10−7 13

Table 2. Average temperature variation in the Helsinki area [12].

Average Maximum Minimum
temperature temperature temperature

Month (◦C) (◦C) (◦C)

1 −4.2 −1.7 −6.9
2 −4.9 −2.2 −7.7
3 −1.5 1.2 −4.2
4 3.3 6.8 0.4
5 9.9 14.0 6.0
6 14.8 18.7 11.0
7 17.2 20.9 13.7
8 15.8 19.3 12.6
9 10.9 13.9 8.1

10 6.2 8.6 3.8
11 1.4 3.6 −0.8
12 −2.2 0.2 −5.0

6. Examples

This section focuses on the demonstration of the analytical solutions. Two examples are
presented here. The specific objective is to assess the accuracy of the analytical method by
comparing analytical and numerical solutions.

6.1. Example 1

The selected three-layer slab is the wall structure of our test building. The main material
is mineral wool (200 mm). Boundary layers are constructed with wall paper (25 mm) and
gypsum board (13 mm). Figure 1 shows a schematic picture of the wall structure and table 1
summarizes the properties of the materials.

Calculation of transient temperature change was made over the central region of the
mineral wool (1D and marked as O). The boundary condition, outdoor temperature, was taken
from measured monthly weather statistics from 1971 to 2000 in the Helsinki area (see table 2



Transient heat conduction in the composite slab-analytical method 91

-10

0

10

20

30

0 60 120 180 240 300 360

Time (day)

T
em

p
er

at
u

re
 (

°C
)

Outdooranalytical
numerical

Figure 2. Comparison of analytical and numerical results for the three-layer composite slab shown
in figure 1. Data stored in hourly values and shown in daily values.

and [12]). The statistics data were fitted with cosine functions with periods 30 and 365 days.
Indoor temperature was assumed to be 20 ◦C. Throughout all the calculations, convective heat
transfer coefficients were assumed to be αout = 25 W m−2 K−1 and αin = 6 W m−2 K−1.

Figure 2 presents the comparison of the transient temperature variation using the analytical
and numerical methods. The temperatures were stored in files as hourly values and shown in
figures as hourly and daily values. The maximal discrepancy is about 0.2 ◦C which appears
in the first month with relative error of 1%. During the next 11 months, the discrepancies
are within 0.008 ◦C (relative error of 0.04%). As described earlier, the initial value was not
specified in developing the analytical solutions. Therefore the initial temperature was not
known in the numerical calculation. Here in all the examples, initial temperatures were
simply assumed to be linear combination of the average indoor and outdoor temperatures.
This resulted in a 1.8 ◦C discrepancy at time t = 0. It is believed that most discrepancies were
due to the rough guess of the initial temperature.

The bigger discrepancies of the analytical and numerical results (the result of the first day)
are shown in more detail as hourly values in figure 3. The numerical value quickly approaches
the analytical value. After 5 h, data show discrepancy of 0.2 ◦C. Note that the thermal time
constant of the three-layer slab is more than 12 h, so the quasi-steady state was certainly not
achieved in first 5 h. The accuracy of the analytical method is further demonstrated for another
70 h calculation for the second month in figure 4.

The validation of the numerical programme can be found in [13–15]. In this case,
experimental work was also carried out for the verification of the numerical model shown in
figure 5.

6.2. Example 2

Two more layers are added in the selected structure of example 1. The main constructions
are mineral wool, concrete and plywood. Boundary layers are kept the same. Figure 6
demonstrates schematically the new structure and table 3 summarizes the thermal properties
of the new added materials.
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Figure 3. Results of first 20 h from figure 2.
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Figure 4. Results of 70 h in the second month from figure 2.

Table 3. Properties of the new materials (see figures 6 and 1).

Thermal conductivity Thermal diffusivity Thickness
Material (W m−1 K−1) (m2 s−1) (mm)

4. Concrete 0.9 3.75 × 10−7 100
5. Plywood 0.147 1.61 × 10−7 100

In this example, the calculation of transient temperature change was made in the middle
region of the mineral wool (1D and marked as O). The boundary temperatures (both outdoor
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Figure 5. Comparison of numerical results and measurements.
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Figure 6. Schematic diagram of the five-layer composite slab studied in example 2. Material
properties are listed in tables 1 and 3.

and indoor) were taken from the measurements in figure 5 and then fitted with cosine functions
with periods 120, 30, 10, 5 and 1 days with the following type:

Tout = a0 +
5∑
1

ai cos

(
2πt

ωi

− ϕi

)
, (6.1a)

Tin = b0 +
5∑
1

bi cos

(
2πt

ωi

− φi

)
, (6.1b)

where ωi = 120, 30, 10, 5 and 1 (day), i = 1, . . . , 5.
The corresponding parameters are listed in table 4 and the fitted temperatures are displayed

in figure 7.
Figure 8 shows temperatures in analytical solutions and the temperatures of the numerical

models. The results were saved as hourly values in files and shown as daily values in the
figure. The discrepancies are within 0.9 ◦C (relative error 4.8%) during this two-month period.
The results of the first 10 h are also shown in figure 9.
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Figure 7. Indoor and outdoor temperature variations.
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Figure 8. Comparison of analytical and numerical results for the five-layer composite slab shown
in figure 6. Data stored in hourly values and shown in daily values.

Table 4. Parameters of equation (6.1).

Parameters b0 b1, φ1 b2, φ2 b3, φ3 b4, φ4 b5, φ5

Indoor 17.298 92 2.3712, −1.774 64, −0.533 07, −0.053 64, −0.121 07,
28.566 93 7.790 886 6.483 743 3.647 276 3.295 951

Parameters a0 a1, ϕ1 a2, ϕ2 a3, ϕ3 a4, ϕ4 a5, ϕ5

Outdoor 3.607 36 −6.460 41, 1.6039, −1.083 67, 1.005 466, −3.068 47,
31.521 78 −8.880 76 5.767 917 2.189 099 2.212 049
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Figure 9. Results of first 10 h from figure 8.

It is worth mentioning that research into other calculation points did not reveal any
substantial difference. Therefore we only demonstrated the results for the central region of
the mineral wool to save space.

7. Conclusions

In this paper, an analytical approach to heat conduction or mass diffusion in a composite slab
subject to general periodic temperature changes has been presented. A hallmark of the result
is its simple and concise mathematical forms of the solutions. Agreement with numerical
solutions is good. However, in a general conduction or diffusion application context, solutions
were only available for constant boundary temperatures for three-layer slab and numerical
schemes were usually necessary. The proposed approach is free of these restrictions. The
explicit solutions provide insight into the interplay between amplitude decays, time lags and
other physical parameters, and can lead to better understanding the thermal process in a
composite slab.

The final conclusion to be drawn is that the analytical solutions are really accurate even
though, as an approximation formula was used in deriving the solutions in equation (3.16).
Comparing analytical and numerical results shows that analytical solutions are accurate almost
from the beginning of the calculation time. This suggests that the magnitude of second term
in (3.15) is very small. Study of this topic will be left for another paper.
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